Oxidative metabolism of a fatty acid amide hydrolase-regulated lipid, arachidonoyltaurine.
نویسندگان
چکیده
A novel class of lipids, N-acyltaurines, was recently discovered in fatty acid amide hydrolase knockout mice. In some peripheral tissues, such as liver and kidney, N-acyltaurines with long, polyunsaturated acyl chains are most prevalent. Polyunsaturated fatty acids are converted to a variety of signaling molecules by cyclooxygenases (COXs) and lipoxygenases (LOXs). The ability of COXs and LOXs to oxygenate arachidonoyltaurine was evaluated to gain insight into the potential metabolic fate of N-acyltaurines. Although arachidonoyltaurine was a poor substrate for COXs, mammalian 12 S- and 15 S-LOXs oxygenated arachidonoyltaurine with similar or better efficiency than arachidonic acid. Products of arachidonoyltaurine oxygenation were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The positional specificity of single oxygenation was retained for 15 S-LOXs. However, platelet-type 12 S-LOX produced 12- and 15-hydroxyeicosatetraenoyltaurines (HETE-Ts). Furthermore, LOXs generated dihydroxyeicosatetraenoyltaurines (diHETE-Ts). Metabolism of arachidonoyltaurine by murine resident peritoneal macrophages (RPMs) was also profiled. Arachidonoyltaurine was rapidly taken up and converted primarily to 12-HETE-T. Over prolonged incubations, RPMs also generated small amounts of diHETE-T. Oxidative metabolism of polyunsaturated N-acyltaurines may represent a pathway for the generation or termination of novel signaling molecules.
منابع مشابه
Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines.
Lipid transmitters are tightly regulated by a balance of biosynthetic and degradative enzymes. Termination of the activity of the N-acyl ethanolamine (NAE) class of lipid-signaling molecules, including the endocannabinoid anandamide (AEA), is principally mediated by the integral membrane enzyme fatty acid amide hydrolase (FAAH) in vivo. FAAH(-/-) mice are highly sensitized to the pharmacologica...
متن کاملTranscriptomic analysis of the hepatic response to stress in the red cusk-eel (Genypterus chilensis): Insights into lipid metabolism, oxidative stress and liver steatosis
Teleosts exhibit a broad divergence in their adaptive response to stress, depending on the magnitude, duration, and frequency of stressors and the species receiving the stimulus. We have previously reported that the red cusk-eel (Genypterus chilensis), an important marine farmed fish, shows a physiological response to stress that results in increased skeletal muscle atrophy mediated by over-exp...
متن کاملAltered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study.
Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphing...
متن کاملN-palmitoyl glycine, a novel endogenous lipid that acts as a modulator of calcium influx and nitric oxide production in sensory neurons.
N-arachidonoyl glycine is an endogenous arachidonoyl amide that activates the orphan G protein-coupled receptor (GPCR) GPR18 in a pertussis toxin (PTX)-sensitive manner and produces antinociceptive and antiinflammatory effects. It is produced by direct conjugation of arachidonic acid to glycine and by oxidative metabolism of the endocannabinoid anandamide. Based on the presence of enzymes that ...
متن کاملMonoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism*
Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 47 12 شماره
صفحات -
تاریخ انتشار 2008